题目内容
如图,抛物线y=ax2+4ax+4与x轴仅有一个公共点,经过点A的直线交该抛物线于点C,交y轴于点B,且点B是线段AC的中点,
(1)求该抛物线的解析式;
(2)求直线AC的解析式.
如图,∠1=60°,∠2=60°,∠3=80°,求∠4的度数.
四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )
A. B. C. D. 1
如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为( )
A. 60° B. 75° C. 90° D. 67.5°
下列计算,正确的是( )
A. a2-a=a B. a2·a3= C. a9÷a3=a3 D. (a3)2=
若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上则称此直线l与该抛物线L具有“一带一路”的关系,此时直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”。若直线y=mx+4与y=x2-4x+n具有“一带一路”的关系则m=________,n=_________。
关于 x 的方程 a(x+m)2+b=0 的解是 x1=﹣2,x2=1(a,m,b 均为常数,a≠0),则方程 a(x+m+2)2+b=0 的解是( )
A. x1=0,x2=3 B. x1=﹣4,x2=﹣1 C. x1=﹣4,x2=2 D. x1=4,x2=1
某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:
(1)该校对多少学生进行了抽样调查?
(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?
(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?
下列长度的三根小木棒能构成三角形的是( )
A. 2cm,3cm,5cm B. 7cm,4cm,2cm C. 3cm,4cm,8cm D. 3cm,3cm,4cm