题目内容
6
.分析:先根据平行线分线段成比例的定理求出AE:AC,AD:AB的值,从而得出CE:AC,BD:AB的值,再根据平行线分线段成比例的定理分别求出AN,AM的长,相加即可求出MN的长.
解答:解:∵DE∥BC,DE=2,BC=6,
∴AE:AC=AD:AB=DE:BC=1:3.
∴CE:AC=2:3,BD:AB=2:3,
∵DE∥MN,
∴AN=3,AM=3,
∴MN=AN+AM=6.
故答案为:6.
∴AE:AC=AD:AB=DE:BC=1:3.
∴CE:AC=2:3,BD:AB=2:3,
∵DE∥MN,
∴AN=3,AM=3,
∴MN=AN+AM=6.
故答案为:6.
点评:此题考查了平行线分线段成比例定理.解题的关键是AE:AC与CE:AC、AD:AB与BD:AB比值的转化.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |