题目内容

【题目】如图,在平面直角坐标系中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A(﹣1,n).

(1)求反比例函数y=的解析式;

(2)若P是x轴上一点,且△AOP是等腰三角形,求点P的坐标;

(3)结合图象直接写出不等式+2x>0的解集为

【答案】(1)y=﹣(2)见解析;(3)﹣1<x<0或x>1.

【解析】

试题分析:(1)利用待定系数法即可解决.

(2)分三种情形讨论①A为顶点,②O为顶点,③P为顶点,分别求解即可.

(3)先求出两个函数图象的交点坐标,然后根据图象,反比例函数图象在上面即可解决问题.

解:(1)∵点A(﹣1,n)在一次函数y=﹣2x上,

∴n=2,

∴点A坐标(﹣1,2)

把点A(﹣1,2)代入y=得k=﹣2,

∴反比例函数的解析式为y=﹣

(2)①当A为等腰三角形顶点时,AO=AP,此时点P坐标为(﹣2,0).

②当点O为等腰三角形顶点时,OA=0P=,此时点P坐标为(﹣,0)或(,0)

③当点P为等腰三角形顶点时,OA的垂直平分线为:y=x+,y=0时,x=﹣,此时点P坐标(﹣,0).

(3)不等式+2x>0,即>﹣2x,

∵一次函数y=﹣2x的图象与反比例函数y=的图象交于点A(﹣1,2),B(1.2)

∴由图象可知﹣1<x<0或x>1.

故答案为﹣1<x<0或x>1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网