题目内容
如图,在△ABC 中,∠ABC=∠CAB=72°,将△ABC绕点A顺时针旋转α度(36°<α<180°)得到△ADE,连接CE,线段BD(或其延长线)分别交AC、CE于G、F点.(1)求证:△ABG∽△FCG;
(2)在旋转的过程中,是否存在一个时刻,使得△ABG与△FCG全等?若存在,求出此时旋转角α的大小.
分析:(1)根据等腰三角形的性质和已知条件可以推出∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE,然后根据三角形的内角和定义,推出∠ABD=∠ECA,继而推出△ABG和△FCG形似;
(2)根据全等三角形的判定定理,当BG=CG时,△ABG与△FCG全等,然后根据BG=CG,结合已知条件推出∠GCB=∠GBC=36°,得∠CAE的度数,即可知旋转角α的大小
(2)根据全等三角形的判定定理,当BG=CG时,△ABG与△FCG全等,然后根据BG=CG,结合已知条件推出∠GCB=∠GBC=36°,得∠CAE的度数,即可知旋转角α的大小
解答:
解:(1)证法一:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴∠ABD=
=
=∠ECA,(5分)
又∵∠BGA=∠CGF,
∴△ABG∽△FCG(7分)
证法二:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴
=
,
∴△ABD∽△ACE,
∴∠DBA=∠ECA(4分)
又∵∠BGA=∠CGF,
∴△ABG∽△FCG(7分)
(2)答:存在(8分)
由(1)知△ABG∽△FCG,∴当BG=CG时,△ABG≌△FCG,
∵∠ABC=∠CAB=72°,∴∠BCA=36°,又△ABG≌△FCG(已知)∴GB=GC,∴∠GCB=∠GBC=36°
又BA=AD∴∠FBA=∠BDA=72°-36°=36°,∴∠BAD=108°,即旋转角∠α=∠BAD=108°.
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴∠ABD=
|
| 180°-∠CAE |
| 2 |
又∵∠BGA=∠CGF,
∴△ABG∽△FCG(7分)
证法二:∵△AED是由△ABC绕点A顺时针旋转得到的,
∴∠BAC=∠DAE=72°,∠BAD=∠CAE,AB=AD,AC=AE(3分)
∴
| AB |
| AC |
| AD |
| AE |
∴△ABD∽△ACE,
∴∠DBA=∠ECA(4分)
又∵∠BGA=∠CGF,
∴△ABG∽△FCG(7分)
(2)答:存在(8分)
由(1)知△ABG∽△FCG,∴当BG=CG时,△ABG≌△FCG,
∵∠ABC=∠CAB=72°,∴∠BCA=36°,又△ABG≌△FCG(已知)∴GB=GC,∴∠GCB=∠GBC=36°
又BA=AD∴∠FBA=∠BDA=72°-36°=36°,∴∠BAD=108°,即旋转角∠α=∠BAD=108°.
点评:本题主要考查同学们对于相似三角形的判定和性质、等腰三角形的性质、全等三角形的判定等知识点的掌握,本题的关键在于根据已知求出各相关角的度数,找到相关的相似三角形.
练习册系列答案
相关题目