题目内容
【题目】如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是( )
![]()
A. ①②③ B. ①②④C. ①③④ D. ①②③④
【答案】B
【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.
E点有4中情况,分四种情况讨论如下:
由AB∥CD,可得∠AOC=∠DCE1=β
∵∠AE1C=∠BAE1+∠AE1C,
∴∠AE1C=β-α
过点E2作AB的平行线,由AB∥CD,
可得∠1=∠BAE2=α,∠2=∠DCE2=β
∴∠AE2C=α+β
由AB∥CD,可得∠BOE3=∠DCE3=β
∵∠BAE3=∠BOE3+∠AE3C,
∴∠AE3C=α-β
由AB∥CD,可得
∠BAE4+∠AE4C+∠DCE4=360°,
∴∠AE4C=360°-α-β
∴∠AEC的度数可能是①α+β,②α﹣β,④360°﹣α﹣β,故选B.
![]()
【题目】2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:
频率分布表
分数段 | 频数 | 频率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m= ,n= ;
(2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
![]()