题目内容
定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )
分析:若p,q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”,根据定义,“距离坐标”是(1,2)的点,说明M到直线l1和l2的距离分别是1和2,这样的点在平面被直线l1和l2的四个区域,各有一个点,即可求出答案.
解答:解:因为平面中两条直线l1和l2相交于点O,对于平面上任意一点M,
若p,q分别是M到直线l1和l2的距离,
则称有序非负实数对(p,q)是点M的“距离坐标”,
根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,
所以满足条件的点的个数是4个.
故选D.
若p,q分别是M到直线l1和l2的距离,
则称有序非负实数对(p,q)是点M的“距离坐标”,
根据上述定义,“距离坐标”是(1,2)的点可以在两条直线相交所成的四个区域内各找到一个,
所以满足条件的点的个数是4个.
故选D.
点评:此题考查了坐标确定位置;解题的关键是要注意两条直线相交时有四个区域,本题是一个好题目,有创新性,但是难度较小,理解题意不难解答,考查学生的逻辑思维能力.
练习册系列答案
相关题目