题目内容

2012年5月一天某时连云港市各区县的可吸入颗粒物数值统计如表:
区 县东海赣榆灌云灌南连云区海州开发区新浦
可吸入颗粒物(mg/m30.150.150.150.150.180.180.030.14
则这8个区县该日这一时刻的可吸入颗粒物数值的极差是________.

0.15
分析:根据极差的公式:极差=最大值-最小值.找出所求数据中最大的值0.18,最小值0.03,再代入公式求值.
解答:由题意可知,数据中最大的值0.18,最小值0.03,
所以极差为0.18-0.03=0.15.
故答案为0.15.
点评:本题主要考查极差的求法极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
练习册系列答案
相关题目
2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月) 1 2 3 4 5 6 7
云端服务器数量y1(台) 32 34 36 38 40 42 44
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p1(万元)与月份x满足函数关系式:p1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p2(万元)与月份x满足函数关系式:p2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)
2012年3月23日至3月25日为期3天、以“云联世界感知未来”为主题的2012中国(重庆)国际云计算博览会(下称云博会)在渝召开,重庆新市委书记张德江说在未来10年内重庆实施“云端计划”建设智慧重庆. 市委市政府非常重视“云端服务器”的建设,几年前就已经着手建设“云端服务器”,据统计,某行政区在去年前7个月内,“云端服务器”的数量与月份之间的关系如下表:
月份x(月)1234567
云端服务器数量y1(台)32343638404244
而由于部分地区陆续被划分到其它行政区,该行政区8至12月份“云端服务器”数量y2(台)与月份x(月)之间存在如图所示的变化趋势:
(1)请观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)在2011年内,市政府每月对每一台云端服务器的资金也随月份发生改变,若对每一台服务器的投入的资金p1(万元)与月份x满足函数关系式:p1=-0.5x+10.5,(1≤x≤7,且x为整数);8至12月份的资金投入p2(万元)与月份x满足函数关系式:p2=0.5x+10(8≤x≤12,且x为整数)求去年哪个月政府对该片区的资金投入最大,并求出这个最大投入;
(3)2012年1月到3月份,政府计划该区的云端服务器每月的数量比去年12份减少2a%,在去年12月份的基础上每月每一台云端服务器资金投入量将增加0.5a%,某民营企业为表示对“智慧重庆”的鼎力支持,决定在1月到3月份对每台云端服务器分别赞助3万元.若计划1月到3月份用于云端服务器所需的资金总额(政府+民企赞助)一共达到546万元,请参考以下数据,估计a的整数值.(参考数据:172=289,182=324,QUOTE 872=7569,882=7744,892=7921)192=361)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网