题目内容
如图,四边形ABCD内接于圆,AD、BC的延长线交于点E,F是BD延长线上一点,DE平分∠CDF.求证:AB=AC.
如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
(1)分别求y1和y2的函数解析式;
(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.
若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:
①x1=2,x2=3;
②m>﹣;
③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离 cm.
如图,在平面直角坐标系中,菱形ABCD的四个顶点均在坐标轴上,A(0,2),∠ABC=60°.把一条长为2013个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣…的规律紧绕在菱形ABCD的边上,则细线另一端所在位置的点的坐标是( )
A.(,) B.(,﹣) C.(﹣,) D.(﹣,)
先化简,再求值
3(2x2+xy)﹣2(3x2+xy),其中x、y满足|y﹣3|+(x+2)2=0.
把不等式组的解集在数轴上表示,正确的是( )
A. B.
C. D.