ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóµãB£¬C£¬DµÄ×ø±ê¼°ÉäÏßADµÄ½âÎöʽ£»
£¨2£©ÔÚABÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹¡÷OCMΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇóÕý·½ÐÎPQMN µÄ±ß³¤£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèÕý·½ÐÎPQMNÓë¡÷ABDÖØµþ²¿·ÖÃæ»ýΪs£¬ÇósÓëtµÄº¯Êý¹ØÏµÊ½£®
·ÖÎö£º£¨1£©¸ù¾Ý¶þ´Îº¯Êý½âÎöʽ£¬µ±x=0ʱ£¬Çó³öCµã×ø±ê£»µ±y=0ʱ£¬Çó³öBµã×ø±ê¼°µãA×ø±ê£»½«Dµãºá×ø±ê´úÈëy=-x2+4x+5£¬¼´¿ÉÇó³öµãD×Ý×ø±ê£»¸ù¾ÝµãA¡¢µãD×ø±ê£¬Ó¦Óôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÉäÏßAD½âÎöʽ£»
£¨2£©¼ÙÉè´æÔÚµãP£¬Ê¹¡÷OCMΪµÈÑüÈý½ÇÐΣ¬¸ù¾Ý¹´¹É¶¨Àí£¬ÈôÄÜÇó³öPµã×ø±ê£¬ÔòP´æÔÚ£¬Í¬Ê±¿ÉÇó³öÕý·½ÐÎPQMN µÄ±ß³¤£»·ñÔòP²»´æÔÚ£»
£¨3£©ÓÉÓÚÖØµþ²¿·ÖÃæ»ýÊDz»È·¶¨µÄ£¬ËùÒÔÒª¸ù¾ÝÆäÖØµþ³Ì¶È£¬·ÖÇé¿öÌÖÂÛ£¬µÃµ½²»Í¬µÄ±í´ïʽ£®
£¨2£©¼ÙÉè´æÔÚµãP£¬Ê¹¡÷OCMΪµÈÑüÈý½ÇÐΣ¬¸ù¾Ý¹´¹É¶¨Àí£¬ÈôÄÜÇó³öPµã×ø±ê£¬ÔòP´æÔÚ£¬Í¬Ê±¿ÉÇó³öÕý·½ÐÎPQMN µÄ±ß³¤£»·ñÔòP²»´æÔÚ£»
£¨3£©ÓÉÓÚÖØµþ²¿·ÖÃæ»ýÊDz»È·¶¨µÄ£¬ËùÒÔÒª¸ù¾ÝÆäÖØµþ³Ì¶È£¬·ÖÇé¿öÌÖÂÛ£¬µÃµ½²»Í¬µÄ±í´ïʽ£®
½â´ð£º
½â£º£¨1£©µ±x=0ʱ£¬y=5£¬ÔòCµã×ø±êΪ£¨0£¬5£©£¬
µ±y=0ʱ£¬-x2+4x+5=0£¬
½âµÃ£¨x+1£©£¨x-5£©=0£¬
x1=-1£»x2=5£®
ÔòAµã×ø±êΪ£¨-1£¬0£©£¬Bµã×ø±êΪ£¨5£¬0£©£®
½«x=4´úÈëy=-x2+4x+5µÃ£¬y=-16+16+5=5£¬
ÔòDµã×ø±êΪ£¨4£¬5£©£®
ÉèADµÄ½âÎöʽΪy=kx+b£¬
°ÑA£¨-1£¬0£©£¬D£¨4£¬5£©·Ö±ð´úÈë½âÎöʽy=kx+bµÃ£¬
£¬
½âµÃ
£¬
º¯Êý½âÎöʽΪy=x+1£¨x¡Ý-1£©£®£¨2·Ö£©
£¨2£©¡ßÖ±ÏßADµÄ½âÎöʽΪ£ºy=x+1£¬ÇÒP£¨t£¬0£©£®
¡àQ£¨t£¬t+1£©£¬M£¨2t+1£¬t+1£©
µ±MC=MOʱ£ºt+1=
£¬
¡à±ß³¤Îª
£®¡£¨1·Ö£©
µ±OC=OMʱ£º£¨2t+1£©2+£¨t+1£©2=52
½âµÃt1=-
-
£¨ÉáÈ¥£©£¬t1=-
+
¡à±ß³¤Îªt+1=
+
£®¡£¨2·Ö£©
µ±CO=CMʱ£º£¨2t+1£©2+£¨4-t£©2=52
½âµÃt1=
£¬t2=
£®
¡à±ß³¤Îªt+1=
£®
»òt+1=t2=
¡£¨2·Ö£©
£¨3£©µ±1£¼t¡Ü
ʱ£¬Õý·½Ðεı߳¤Îª£¨t+1£©£¬¹ÊÆäÃæ»ýΪ£ºs=£¨t+1£©2£»¡£¨1·Ö£©
µ±
¡Üt¡Ü2ʱ£ºs=-
t2+
t-
£»¡£¨1·Ö£©
µ±2¡Üt¡Ü4ʱ£ºs=-
t2+
t+
£»¡£¨1·Ö£©
µ±4¡Üt¡Ü5ʱ£ºs=
t2-25t+
£®¡£¨1·Ö£©
µ±y=0ʱ£¬-x2+4x+5=0£¬
½âµÃ£¨x+1£©£¨x-5£©=0£¬
x1=-1£»x2=5£®
ÔòAµã×ø±êΪ£¨-1£¬0£©£¬Bµã×ø±êΪ£¨5£¬0£©£®
½«x=4´úÈëy=-x2+4x+5µÃ£¬y=-16+16+5=5£¬
ÔòDµã×ø±êΪ£¨4£¬5£©£®
ÉèADµÄ½âÎöʽΪy=kx+b£¬
°ÑA£¨-1£¬0£©£¬D£¨4£¬5£©·Ö±ð´úÈë½âÎöʽy=kx+bµÃ£¬
|
½âµÃ
|
º¯Êý½âÎöʽΪy=x+1£¨x¡Ý-1£©£®£¨2·Ö£©
£¨2£©¡ßÖ±ÏßADµÄ½âÎöʽΪ£ºy=x+1£¬ÇÒP£¨t£¬0£©£®
¡àQ£¨t£¬t+1£©£¬M£¨2t+1£¬t+1£©
µ±MC=MOʱ£ºt+1=
| 5 |
| 2 |
¡à±ß³¤Îª
| 5 |
| 2 |
µ±OC=OMʱ£º£¨2t+1£©2+£¨t+1£©2=52
½âµÃt1=-
| 3 |
| 5 |
2
| ||
| 5 |
| 3 |
| 5 |
2
| ||
| 5 |
¡à±ß³¤Îªt+1=
| 2 |
| 5 |
2
| ||
| 5 |
µ±CO=CMʱ£º£¨2t+1£©2+£¨4-t£©2=52
½âµÃt1=
2+2
| ||
| 5 |
2-2
| ||
| 5 |
¡à±ß³¤Îªt+1=
7+2
| ||
| 5 |
»òt+1=t2=
7-2
| ||
| 5 |
£¨3£©µ±1£¼t¡Ü
| 19 |
| 11 |
µ±
| 19 |
| 11 |
| 111 |
| 10 |
| 219 |
| 5 |
| 351 |
| 5 |
µ±2¡Üt¡Ü4ʱ£ºs=-
| 11 |
| 10 |
| 19 |
| 5 |
| 49 |
| 10 |
µ±4¡Üt¡Ü5ʱ£ºs=
| 5 |
| 2 |
| 125 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¡¢Èý½ÇÐμ°Õý·½ÐεÄÐÔÖÊ¡¢´æÔÚÐÔÎÊÌâµÈÄÚÈÝ£¬×ÛºÏÐÔÇ¿£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿