题目内容

盼盼同学在学习正多边形时,发现了以下一组有趣的结论:
精英家教网
①若P是圆内接正三角形ABC的外接圆的
BC
上一点,则PB+PC=PA;
②若P是圆内接正四边形ABCD的外接圆的
BC
上一点,则PB+PD=
2
PA

③若P是圆内接正五边形ABCDE的外接圆的
BC
上一点,请问PB+PE与PA有怎样的数量关系,写出结论,并加以证明;
④若P是圆内接正n边形A1A2A3…An的外接圆的
A2A3
上一点,请问PA2+PAn与PA1又有怎样的数量关系,写出结论,不要求证明.
分析:PB+PC=PA,可以在PA上截取一条线段等于PB,然后证明剩下的部分等于PC即可,其它三问的解决思路相同.
解答:解:
③PB+PE与PA满足的数量关系是:PB+PE=2PA•cos36°;(3分)
理由如下:作AM⊥PB于M,AN⊥PE于N,
∵∠APM=∠APN
∴Rt△AMP≌Rt△ANP,
∴AM=AN,PM=PE;(5分)
∵AB=AE,
∴Rt△AMB≌Rt△ANE,
∴MB=NE∴PB+PE=(PM-MB)+(PN+NE)=2PN;(7分)
∠APE=
1
2
∠AOE
,且ABCDE为正五边形,
∠AOE=
360°
5
=72°

∴∠APE=36°;
在Rt△ANP中,
PN
PA
=cos∠APN

∴PN=PA•cos36°,
∴PB+PE=2PA•cos36°.(9分)

④若P是圆内接正n边形A1A2A3…An的外接圆的
A2A3
上一点时,PA2+PAn与PA1满足的数量关系是:PA2+PAn=2PA1cos(
180
n
)0
.(12分)
精英家教网
点评:正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网