题目内容

如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.当AB≠AC时,求证:四边形ADFE为平行四边形.

证明:
∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°.
∴∠FBE=∠CBA,
在△FBE和△CBA中,

∴△FBE≌△CBA(SAS).
∴EF=AC.
又∵△ADC为等边三角形,
∴CD=AD=AC.
∴EF=AD.
同理可得AE=DF.
∴四边形AEFD是平行四边形.
分析:根据等边三角形的性质得出边角之间的关系,再利用全等三角形的判定得出△FBE≌△CBA,进而得出EF=AD,同理可得AE=DF,即可得出四边形ADFE为平行四边形.
点评:此题主要考查了全等三角形的判定与性质以及平行四边形的判定,得出EF=AD是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网