题目内容
如图,点P的对面是一面东西走向的墙,某人在点P观察一辆自西向东行驶的汽车AB,汽车的长为6米,根据图中标示的数据解决下列问题:
(1)画出此人在汽车与墙之间形成的盲区,并求出该盲区的面积;
(2)当汽车行驶到CD位置时,盲区的面积是否会发生变化?为什么?
∵AB∥EF,
∴△PAB∽△PEF,
∴
∴EF=9,
∴盲区的面积为:(6+9)×10÷2=75m2;
(2)当汽车行驶到CD位置时,盲区的面积不会发生变化,
∵△PCD与△PMN仍然相似,且它们的高不变,所以相似比不变,汽车长度不变.
所以MN的长不变,所以梯形CMND的面积不变,即盲区的面积不变.
分析:(1)根据已知画出形成的盲区为梯形AEFB,再利用梯形面积求法得出答案即可;
(2)根据∵△PCD与△PMN仍然相似,且它们的高不变,所以相似比不变,汽车长度不变,所以MN的长不变,所以梯形CMND的面积不变,即盲区的面积不变.
点评:此题主要考查了盲区的确定方法以及梯形面积求法,根据已知得出MN的长不变,进而得出梯形CMND的面积不变是解题关键.
练习册系列答案
相关题目