题目内容

精英家教网如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.
分析:(1)根据A点坐标,可得到OA、OB的长,过B作BD⊥x轴于D,由于∠OBD=60°,通过解直角三角形,即可求得B点的坐标;
(2)根据A、O、B三点坐标,即可利用待定系数法求出该抛物线的解析式;
(3)由于A、O关于抛物线的对称轴对称,若连接BA,那么直线BA与抛物线对称轴的交点即为所求的C点,可先求出直线AB的解析式,联立抛物线的对称轴方程即可求出C点的坐标.
解答:精英家教网解:(1)过B作BD⊥x轴于D
∵A(-2,0),
∴OA=OB=2
Rt△OBD中,∠BOD=60°,OB=2,
∴∠OBD=30°,
∴OD=1,BD=
3

故B(1,
3
);(2分)

(2)设抛物线的解析式为y=a(x-0)(x+2),
代入点B(1,
3
),
得a=
3
3
,(3分)
因此y=
3
3
x2+
2
3
3
x;(5分)

(3)如图,抛物线的对称轴是直线x=-1,
∵A、O两点关于直线x=-1对称,
∴当点C位于对称轴与线段AB的交点时,△BOC的周长最小,即△BOC的周长线段AB的长;
设直线AB为y=kx+b,
所以
k+b=
3
-2k+b=0

解得
k=
3
3
b=
2
3
3

因此直线AB为y=
3
3
x+
2
3
3
,(7分)
当x=-1时,y=
3
3

因此点C的坐标为(-1,
3
3
).(8分)
点评:此题主要考查了图形的旋转变化、二次函数解析式的确定、平面展开-最短路径等相关知识,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网