题目内容

对于抛物线 .
(1)它与x轴交点的坐标为   ,与y轴交点的坐标为    ,顶点坐标为       
(2)在坐标系中利用描点法画出此抛物线;

x

 
 
 
 
 

y

 
 
 
 
 

 

(3)利用以上信息解答下列问题:若关于x的一元二次方程(t为实数)在<x<的范围内有解,则t的取值范围是        

(1)它与x轴交点的坐标为:(-1,0)(-3,0),与y轴交点的坐标为(0,3),顶点坐标为(2,-1);故答案为:(1,0)(3,0),(0,3)(2,-1)
(2)列表:

x

0
1
2
3
4

y

3
0
-1
0
3

图象如图所示.
(3)∵关于x的一元二次方程x2-4x+3-t=0(t为实数)在-1<x<的范围内有解,
∵y=x2-4x+3的顶点坐标为(2,-1),
若x2-4x+3-t=0有解,方程有两个根,则:b2-4ac=16-4(3-t)≥0,
解得:-1≤t
当x=-1,代入x2-4x+3-t=0,t=8,
∵x>-1,∴t<8,
∴t的取值范围是:-1≤t<8,
故填:-1≤t<8

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网