题目内容
某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.
(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。
人体中成熟红细胞的平均直径为0.0000077m,用科学记数法表示为( )
A. 7.7×10﹣5m B. 77×10﹣6m C. 77×10﹣5m D. 7.7×10﹣6m
若函数的图象与轴只有一个公共点,则___.
小明为了研究关于的方程的根的个数问题,先将该等式转化为,再分别画出函数的图象与函数的图象(如图),当方程有且只有四个根时, 的取值范围是( )
如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.
如图,⊙O的直径为16,AB、CD是互相垂直的两条直径,点P是弧AD上任意一点,经过P作PM⊥AB于M,PN⊥CD于N,点Q是MN的中点,当点P沿着弧AD从点A移动到终点D时,点Q走过的路径长为__.
下列方程是一元二次方程的是( )
A. 3x2+=0 B. 2x﹣3y+1=0 C. (x﹣3)(x﹣2)=x2 D. (3x﹣1)(3x+1)=3
如图,已知一次函数y=x+b与反比例函数y= 的图象交于A、B两点,其中点A的坐标为(2,3).(1)求点B的坐标;(2)请根据图象直接写出不等式x+b>的解集.