题目内容
在ABCD中,点E在AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F.若△FDE的周长为8,△FCB的周长为22,则FC的长.为( ).
A.6 B.8 C.7 D.9
(本题满分8分)情景:
试根据图中信息,解答下列问题:
(1)购买8根跳绳需 元,购买14根跳绳需 元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
如图,在矩形ABCD中,CD=5,BC=3,点P从起点A出发沿AD、DC向终点C匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AB、BP所围成图形的面积为y.则在下列图像中,能正确反映y与x的函数关系的是 ( )
已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为_________.
如图所示,有一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉A、B之间的距离为20cm,则∠1等于( )
A.90° B.60° C.45° D.30°
(本小题5分)我们定义:如图1,矩形MNPQ中,点K、O、G、H分别在NP、PQ、QM、MN上,若,则称四边形KOGH为矩形MNPQ的反射四边形.如图2、图3四边形ABCD、A’B’C’D’均为矩形,它们都是由32个边长为1的正方形组成的图形,点E、F、E’、F’分别在BC、CD、B’C’、C’D’边上,试利用正方形网格在图2、图3中分别画出矩形ABCD和矩形A’B’C’D’的反射四边形EFGH和E’F’G’H’.
如图,在直角坐标系中,正方形A1B1C1O、 A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1的顶点A1、A2、A3、…、An均在直线y=kx+b上,顶点C1、C2、C3、…、Cn在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A4的坐标为 ,点An的坐标为 .
(本小题12分)如图1,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)试用含t的式子表示AE、AD的长;
(2)如图2,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(3)连接DE,当t为何值时,△DEF为直角三角形?
(4)如图3,连接DE,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
已知实数a、b满足ab>0,a+b<0,则一次函数y=ax-b的图象可能是.
A. B. C. D.