题目内容
如图,已知AB=AC,∠BAC=120º,在BC上取一点O,以O为圆心OB为半径作圆,
①且⊙O过A点,过A作AD∥BC交⊙O于D,
求证:(1)AC是⊙O的切线;
(2)四边形BOAD是菱形。![]()
证明:(1)∵AB=AC,∠BAC=120º,∴∠ABC=∠C=30º。
∵OB=OA,∴∠BAO=∠ABC=30º。∴∠CAO=120º-30º=90º。
∴ OA⊥AC。
∵OA为⊙O的半径,∴ AC是⊙O的切线。
(2)连接OD,![]()
∵AD∥BC,
∴∠DAB=∠ABC=30º。
∴∠DAO=60º。
∵OA=OD,∴△OAD为等边三角形。
∴OB=OA=AD,
又∵AD∥BC,∴ADBO为平行四边形。
且OA=OB,∴四边形BOAD是菱形。
解析
练习册系列答案
相关题目
| A、60° | B、90° | C、45° | D、120° |