题目内容
先化简,再求值,其中x=﹣2+.
2017年岳阳教育将完成实事攻坚任务,实施薄改工程,利用中央和地方专项资金9.4亿元,改造薄弱学校800所,9.4亿元用科学记数法表示为____________________元.
某运输公司用10辆相同的汽车将一批苹果运到外地,每辆汽车能装8吨甲种苹果,或10吨乙种苹果,或11吨丙种苹果.公司规定每辆车只能装同一种苹果,而且必须满载.已知公司运送了甲、乙、丙三种苹果共100吨,且每种苹果不少于一车.
(1)设用x辆车装甲种苹果,y辆车装乙种苹果,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)若运送三种苹果所获利润的情况如下表所示:
设此次运输的利润为W(万元),问:如何安排车辆分配方案才能使运输利润W最大,并求出最大利润.
已知一次函数y=kx+b,y随x的增大而增大,且kb<0,则在平面直角坐标系内,它的大致图像是( )
A. B. C. D.
某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元.在销售过程中发现,月销售量夕(件)与销售单价x (万元)之间存在着如图所示的一次函数关系
(1)求y关于x的函数关系式(直接写出结果)
(2)试写出该公司销售该种产品的月获利z(万元)关于销售单价x(万元)的函数关系式、当销售单价x为何值时,月获利最大?并求这个最大值
(月获利一月销售额一月销售产品总进价一月总开支,)
(3)若公司希望该产品一个月的销售获利不低于5万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少万元
经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为_________每千克.
已知方程x 2 +x=2,则下列说中,正确的是( )
A. 方程两根之和是1 B. 方程两根之和是-1
C. 方程两根之积是2 D. 方程两根之差是-1
已知, ,则的值为____________.
如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF.
(1)求证:AF∥CE;
(2)探究线段AF,EF,EC之间的数量关系,并说明理由;
(3)若BC=6,BG=8,求AF的长.