ÌâÄ¿ÄÚÈÝ
ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2
(2k+3)x+k2+3k+2=0
£¨1£©ÊÔÅжÏÉÏÊö·½³Ì¸ùµÄÇé¿ö£»
£¨2£©ÈôÒÔÉÏÊö·½³ÌµÄÁ½¸ö¸ùΪºá×ø±ê¡¢×Ý×ø±êµÄµãÇ¡ÔÚ·´±ÈÀýº¯Êý
µÄͼÏóÉÏ£¬ÇóÂú×ãÌõ¼þµÄmµÄ×îСֵ£»
£¨3£©ÒÑÖª¡÷ABCµÄÁ½±ßAB¡¢ACµÄ³¤ÊǹØÓÚÉÏÊö·½³ÌµÄÁ½¸öʵÊý¸ù£¬BCµÄ³¤Îª5£®
¢Ùµ±kΪºÎֵʱ£¬¡÷ABCÊÇÒÔBCΪб±ßµÄÖ±½ÇÈý½ÇÐÎ?
¢Úµ±kΪºÎֵʱ£¬¡÷ABCÊǵÈÑüÈý½ÇÐÎ?ÇëÇó³ö´Ëʱ¡÷ABCµÄÖܳ¤£®
£¨1£©ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»£¨2£©
£»£¨3£©¢Ù2»ò3£»¢Úk=3»ò4£¬Öܳ¤Îª14ºÍ16
½âÎöÊÔÌâ·ÖÎö£º£¨1£©ÏÈÓÉÌâÒâÇóµÃ¸ùµÄÅбðʽ¡÷
µÄÖµ£¬¼´¿É×÷³öÅжϣ»
£¨2£©Éè·½³Ìx2
(2k+3)x+k2+3k+2=0µÄÁ½¸ö¸ùΪ
£¬
£¬¸ù¾ÝÌâÒâµÃ
£®ÓÖÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃ£¬
£¬´Ó¶ø¿ÉµÃ
£¬ÔÙ¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃ½á¹û£»
£¨3£©¢ÙÓÉÌâÒâ¿ÉµÃx1="k" +1£¬x2=k+2£®²»·ÁÉèAB=k+1£¬AC=k+2£®ÔÙ¸ù¾Ý¹´¹É¶¨Àí¼´¿ÉÁз½³ÌÇó½â£»
¢Ú·ÖAC=BC=5ÓëAB=BC=5Á½ÖÖÇé¿ö£¬½áºÏµÈÑüÈý½ÇÐεÄÐÔÖÊÇó½â¼´¿É.
£¨1£©ÓÉ·½³Ìx2
(2k+3)x+k2+3k+2=0£¬µÃb2
4ac=1£¬
·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©Éè·½³Ìx2
(2k+3)x+k2+3k+2=0µÄÁ½¸ö¸ùΪ
£¬
£¬¸ù¾ÝÌâÒâµÃ
£®
ÓÖÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµµÃ£¬
£¬
ËùÒÔ£¬µ±k£½
ʱ,mÈ¡µÃ×îСֵ
£»
£¨3£©¢Ùx1="k" +1£¬x2=k+2£®²»·ÁÉèAB=k+1£¬AC=k+2£®
б±ßBC=5ʱ£¬ÓÐAB2+AC2=BC2£¬¼´(k+1)2+(k+2)2=25
½âµÃk1=2£¬k2=
5(ÉáÈ¥)
µ±k="2" ʱ£¬¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»
¢Ú
AB=k+1£¬AC=k+2£¬BC=5,
ÓÉ£¨1£©ÖªAB¡ÙAC
¹ÊÓÐÁ½ÖÖÇé¿ö£º
£¨¢ñ£©µ±AC=BC=5ʱ£¬k+2=5£¬k=3£®
¡ß5¡¢5¡¢4ÄÜ×é³ÉÈý½ÇÐΣ¬
¡÷ABCµÄÖܳ¤Îª5+5+k+1=14
£¨¢ò£©µ±AB=BC=5ʱ£¬k+1=5£¬k=4£®
¡ß5¡¢5¡¢6ÄÜ×é³ÉÈý½ÇÐΣ¬
¡÷ABCµÄÖܳ¤Îª5+5+k+2=16£®
¹Ê¡÷ABCµÄÖܳ¤·Ö±ðÊÇ14ºÍ16£®
¿¼µã£ºÒ»Ôª¶þ´Î·½³ÌµÄÓ¦ÓÃ
µãÆÀ£º½âÌâµÄ¹Ø¼üÊÇÊì¼ÇÒ»Ôª¶þ´Î·½³Ì¸ùµÄÇé¿öÓëÅбðʽ¡÷
µÄ¹ØÏµ£º£¨1£©
·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»£¨2£©
·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£»£¨3£©
·½³ÌûÓÐʵÊý¸ù£®