题目内容
如图,D、E、F分别是△ABC各边的中点,AH是高,如果ED=6cm,那么HF的长为________cm.
6
分析:根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=
AC,即可求解.
解答:∵D、E分别是△ABC各边的中点,
∴DE为△ABC的中位线,
∵ED=6cm,
∴AC=2DE=2×6=12(cm),
∵AH⊥CD,且F为AC的中点,
∴HF=
AC=6cm.
故答案为:6.
点评:本题考查了三角形的中位线定理及直角三角形斜边中线的性质,解答本题关键是性质定理的掌握,难度一般.
分析:根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=
解答:∵D、E分别是△ABC各边的中点,
∴DE为△ABC的中位线,
∵ED=6cm,
∴AC=2DE=2×6=12(cm),
∵AH⊥CD,且F为AC的中点,
∴HF=
故答案为:6.
点评:本题考查了三角形的中位线定理及直角三角形斜边中线的性质,解答本题关键是性质定理的掌握,难度一般.
练习册系列答案
相关题目