题目内容
证明:
≤
+
+…+
<
(n为正整数).
证明:
+
+…+
=
(1-
)+
(
-
)+…+
(
-
)
=
(1-
+
-
+…+
-
)
=
(1-
)
=
•
=
,
∵
≤
<
,(n为正整数,n=1时
最小),
∴
≤
<
,
∴
≤
+
+…+
<
(n为正整数).
分析:利用
=
(
-
)把
+
+…+
(n为正整数)的每个分数进行转化得到
+
+…+
=
(1-
)+
(
-
)+…+
(
-
)=
(1-
+
-
+…+
-
),然后进行括号内的加减运算,最后得到
,n为正整数,当n=1时
最小;并且
<
=
,即可得到结论.
点评:本题考查了有理数的混合运算:当n为正整数,分数
可化为分数
与
分数的差的
.
=
=
=
=
∵
∴
∴
分析:利用
点评:本题考查了有理数的混合运算:当n为正整数,分数
练习册系列答案
相关题目