题目内容

如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是     

考点:含30度角的直角三角形;线段垂直平分线的性质.

分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.

解答:解:∵∠ACB=90°,FD⊥AB,

∴∠∠ACB=∠FDB=90°,

∵∠F=30°,

∴∠A=∠F=30°(同角的余角相等).

又AB的垂直平分线DE交AC于E,

∴∠EBA=∠A=30°,

∴直角△DBE中,BE=2DE=2.

故答案是:2.

点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°. 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网