题目内容
已知关于x的一元二次方程x2+mx+4=0有两个正整数根,则m可能取的值为( )A.m>0
B.m>4
C.-4,-5
D.4,5
【答案】分析:方程有两个正整数根,说明根的判别式△=b2-4ac≥0,即m2-4×1×4≥0,由此可以求出m的取值范围,然后根据方程有两个正整数根确定m的值.
解答:解:∵关于x的一元二次方程x2+mx+4=0有两个正整数根,
∴△=b2-4ac≥0,即m2-4×1×4≥0,
∴m2≥16,
解得m≥4或m≤-4,
∵方程的根是x=
,
又因为是两个正整数根,则m<0
则m≤-4
故A、B、D一定错误.
C,把m=-4和-5代入方程的根是x=
,检验都满足条件.
∴m可能取的值为-4,-5.
故选C.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
正确确定m的范围,并进行正确的检验是解决本题的关键.
解答:解:∵关于x的一元二次方程x2+mx+4=0有两个正整数根,
∴△=b2-4ac≥0,即m2-4×1×4≥0,
∴m2≥16,
解得m≥4或m≤-4,
∵方程的根是x=
又因为是两个正整数根,则m<0
则m≤-4
故A、B、D一定错误.
C,把m=-4和-5代入方程的根是x=
∴m可能取的值为-4,-5.
故选C.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
正确确定m的范围,并进行正确的检验是解决本题的关键.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
| 1 |
| x1 |
| 1 |
| x2 |
| A、8 | B、-7 | C、6 | D、5 |