题目内容
如果分式的值为0,则x的值应为______.
甲、乙两地相距600km,乘高铁列车从甲地到乙地比乘特快列车少用4h,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h,根据题意可列方程为( )
A. =4 B. =4
C. =4 D. =4×2
己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A,B两点(点A在点B的左侧),点A,点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)求出点A,点B的坐标.
(2)求出该二次函数的解析式.
用配方法解方程时,配方结果正确的是( )
A. B. C. D.
已知分式,试问:
当m为何值时,分式有意义?
当m为何值时,分式值为0?
当分式的值为0时,x的值为( )
A. 0 B. 3 C. -3 D. ±3
在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0.
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
若(a –b) :b=3 :2 ,则a :b= __________.
如图,在等腰中,的平分线与的垂直平分线交于点,点沿折叠后与点重合,求的度数