题目内容
(本题6分)先化简,再求值:,其中
在实数范围内分解因式 = .
服装厂准备生产某种样式的服装40000套,分黑色和彩色两种.
(1)若生产黑色服装的套数不多于彩色服装套数的,问最多生产多少套黑色服装.
(2)目前工厂有100名工人,平均每人生产400套,由于展品会上此种样式服装大受欢迎,工厂计划增加产量;由于条件发生变化,人均生产套数将减少1.25a% ,要使生产总量增加10%,则工人需增加2.4a%,求a的值.
《重庆市国民经济和社会发展第十二个五年规划纲要》提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将数据15000亿用科学记数法表示为( )亿.
A.1.5×1011 B.1.5×1012 C.1.5×103 D.1.5×104
(本题10分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积s与工作时间t的函数关系如图所示,则休息后园林队每小时绿化面积为 平方米
如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,,BC的长是10m,则乘电梯从点B到点C上升的高度是 ( )
A. B.5 C. D.10
将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 .
商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案.