搜索
题目内容
已知关于
x
的方程
的解是正数,则
m
的取值范围为
试题答案
相关练习册答案
m
>-6且
m
≠-4
解析
练习册系列答案
培优辅导系列答案
文曲星跟踪测试卷系列答案
优加密卷系列答案
教学质量检测卷系列答案
综合练习与检测系列答案
标准课堂作业系列答案
单元检测卷系列答案
新起点百分百课课练系列答案
课时训练一二三步系列答案
新课标小学教学资源试题库系列答案
相关题目
已知关于x的方程(m+1)
x
m
2
+1
+(m-2)x-1=0,问:
(1)m取何值时,它是一元二次方程并猜测方程的解;
(2)m取何值时,它是一元一次方程?
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
已知关于x的方程(k-1)x
2
+(2k-3)x+k+1=0有两个不相等的实数根x
1
,x
2
.
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)
2
-4(k-1)(k+1)
=4k
2
-12k+9-4k
2
+4
=-12k+13>0.
∴k<
.
∴当k<
时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x
1
+x
2
=
=0,解得k=
.
检验知k=
是
=0的解.
所以当k=
时,方程的两实数根x
1
,x
2
互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案