题目内容

化简
2x-y-z
x2-xy-xz+yz
+
2y-x-z
y2-xy-yz+xz
+
2z-x-y
z2-xz-yz+xy
分析:先把分母分解得出
(x-y)+(x-z)
(x-y)(x-z)
+
(y-x)+(y-z)
(y-x)(y-z)
+
(z-x)+(z-y)
(z-x)(z-y)
,根据分式的除法得出
1
x-z
+
1
x-y
+
1
y-z
+
1
y-x
+
1
z-y
+
1
z-x
,把互为相反数的数相加即可.
解答:解:原式=
(x-y)+(x-z)
(x-y)(x-z)
+
(y-x)+(y-z)
(y-x)(y-z)
+
(z-x)+(z-y)
(z-x)(z-y)

=
1
x-z
+
1
x-y
+
1
y-z
+
1
y-x
+
1
z-y
+
1
z-x

=
1
x-z
-
1
x-z
+
1
x-y
-
1
x-y
+
1
y-z
-
1
y-z

=0+0+0
=0.
点评:本题考查了分式的加减混合运算,题目比较典型,并且有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网