题目内容
化简
+
+
.
| 2x-y-z |
| x2-xy-xz+yz |
| 2y-x-z |
| y2-xy-yz+xz |
| 2z-x-y |
| z2-xz-yz+xy |
分析:先把分母分解得出
+
+
,根据分式的除法得出
+
+
+
+
+
,把互为相反数的数相加即可.
| (x-y)+(x-z) |
| (x-y)(x-z) |
| (y-x)+(y-z) |
| (y-x)(y-z) |
| (z-x)+(z-y) |
| (z-x)(z-y) |
| 1 |
| x-z |
| 1 |
| x-y |
| 1 |
| y-z |
| 1 |
| y-x |
| 1 |
| z-y |
| 1 |
| z-x |
解答:解:原式=
+
+
=
+
+
+
+
+
=
-
+
-
+
-
=0+0+0
=0.
| (x-y)+(x-z) |
| (x-y)(x-z) |
| (y-x)+(y-z) |
| (y-x)(y-z) |
| (z-x)+(z-y) |
| (z-x)(z-y) |
=
| 1 |
| x-z |
| 1 |
| x-y |
| 1 |
| y-z |
| 1 |
| y-x |
| 1 |
| z-y |
| 1 |
| z-x |
=
| 1 |
| x-z |
| 1 |
| x-z |
| 1 |
| x-y |
| 1 |
| x-y |
| 1 |
| y-z |
| 1 |
| y-z |
=0+0+0
=0.
点评:本题考查了分式的加减混合运算,题目比较典型,并且有一定的难度.
练习册系列答案
相关题目