题目内容
某校八年一班的一节数学活动课安排了测量操场上悬挂国旗的旗杆的高度.甲、乙、丙三个学习小组设计的测量方案如图所示:甲组测得图中BO=60米,OD=3.4米,CD=1.7米;乙组测得图中,CD=1.5米,同一时刻影长FD=0.9米,EB=18米;丙组测得图中,EF∥AB、FH∥BD,BD=90米,EF=0.2米,人的臂长(FH)为0.6米.请你任选一种方案,利用实验数据求出该校旗杆的高度.分析:此题三种方案都是把实际问题抽象成三角形相似的问题,解题方法都是利用相似三角形对应边成比例求出结果,只是第三种方案要用两次三角形相似,根据两组对应边成比例导出
=
,然后再求出旗杆的高度.
| FH |
| BD |
| EF |
| AB |
解答:解:选择甲组方案计算:
在△ABO和△CDO中,因为∠ABO=∠CDO=90°,∠COD=∠AOB,
所以△ABO∽△CDO.
所以
=
,所以AB=
,
又BO=60米,OD=3.4米,CD=1.7米,AB=30米,
即该校的旗杆为30米.
选择乙组方案计算:
连AE,CF,在△ABE和△CDF中,因为∠ABE=∠CDF=90°,∠AEB=∠CFD,
所以△ABE∽△CDF.所以
=
,又CD=1.5米,FD=0.9米,EB=18米,
所以AB=30米,即该校的旗杆为30米.
选择丙组方案计算:
由FH∥BD,可得∠CFH=∠CBD,∠FCH=∠BCD,所以△CFH∽△CBD,
=
,
又EF∥AB,可得∠FEC=∠BAC,∠FCE=∠BCA,△CFE∽△CBA,
=
,
所以
=
又BD=90米,EF=0.2米,FH=0.6米,AB=30米,
即该校的旗杆为30米.
在△ABO和△CDO中,因为∠ABO=∠CDO=90°,∠COD=∠AOB,
所以△ABO∽△CDO.
所以
| AB |
| CD |
| BO |
| DO |
| BO.CD |
| DO |
又BO=60米,OD=3.4米,CD=1.7米,AB=30米,
即该校的旗杆为30米.
选择乙组方案计算:
连AE,CF,在△ABE和△CDF中,因为∠ABE=∠CDF=90°,∠AEB=∠CFD,
所以△ABE∽△CDF.所以
| AB |
| CD |
| BE |
| DF |
所以AB=30米,即该校的旗杆为30米.
选择丙组方案计算:
由FH∥BD,可得∠CFH=∠CBD,∠FCH=∠BCD,所以△CFH∽△CBD,
| CF |
| CB |
| FH |
| BD |
又EF∥AB,可得∠FEC=∠BAC,∠FCE=∠BCA,△CFE∽△CBA,
| CF |
| CB |
| EF |
| AB |
所以
| FH |
| BD |
| EF |
| AB |
即该校的旗杆为30米.
点评:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例就可以求出旗杆的高度.
练习册系列答案
相关题目
某校八年级二班的一个研究性学习小组的研究课题是某时某公路、十字路口的汽车的流量问题,某天上午他们在该处每隔相等的时间,对3分钟内通过的汽车的数量作一次统计,得到如下数据:
| 记录的次数 | 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 |
| 3分钟内通过的汽车流量 | 49 | 50 | 64 | 58 | 53 | 56 | 55 | 47 |
(1)求平均每3分钟通过汽车多少辆?
(2)试估计这天上午该路口平均每小时通过多少辆汽车?