题目内容
如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为
- A.30°
- B.40°
- C.50°
- D.60°
B
分析:利用线段的垂直平分线的性质计算.
通过已知条件由∠B=90°,∠BAE=10°?∠AEB
∠AEB=∠EAC+∠C=2∠C.
解答:∵ED是AC的垂直平分线,
∴AE=CE
∴∠EAC=∠C,
又∵∠B=90°,∠BAE=10°,
∴∠AEB=80°,
又∵∠AEB=∠EAC+∠C=2∠C,
∴∠C=40°.
故选B.
点评:此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.
分析:利用线段的垂直平分线的性质计算.
通过已知条件由∠B=90°,∠BAE=10°?∠AEB
∠AEB=∠EAC+∠C=2∠C.
解答:∵ED是AC的垂直平分线,
∴AE=CE
∴∠EAC=∠C,
又∵∠B=90°,∠BAE=10°,
∴∠AEB=80°,
又∵∠AEB=∠EAC+∠C=2∠C,
∴∠C=40°.
故选B.
点评:此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.
练习册系列答案
相关题目