题目内容
在△ABC中,a、b、c为三角形的三边,化简A.3a+b-c
B.-a-3b+3c
C.a+3b-c
D.2a
【答案】分析:首先根据三角形的三边关系得到根号内或绝对值内的式子的符号,再根据二次根式或绝对值的性质化简.
解答:解:∵a、b、c为三角形的三边,
∴a+c>b,a+b>c,
即a-b+c>0,c-a-b<0;
∴
-2|c-a-b|=(a-b+c)+2(c-a-b)=-a-3b+3c.
故选B.
点评:本题主要考查二次根式的化简方法与运用:a>0时,
=a;a<0时,
=-a;a=0时,
=0.
绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.
解答:解:∵a、b、c为三角形的三边,
∴a+c>b,a+b>c,
即a-b+c>0,c-a-b<0;
∴
故选B.
点评:本题主要考查二次根式的化简方法与运用:a>0时,
绝对值的性质:负数的绝对值等于它的相反数;正数的绝对值等于它本身;0的绝对值是0.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |