题目内容

如图,抛物线y=ax2 + bx + c 交x轴于A、B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0)、C(0,-3)。
(1)求抛物线y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面积比;
(3)在对称轴上是否存在一个P点,使△PAC的周长最小。
若存在,请你求出点P的坐标;若不存在,请你说明理由。

(1)∵抛物线与x轴交于A(-1,0)、B两点,且对称轴为直线x=1,
∴点B的坐标为(3,0),∴可设抛物线的解析式为y= a(x+1)(x-3)
又∵抛物线经过点C(0,-3),∴ -3=a(0+1)(0-3)
∴a=1,∴所求抛物线的解析式为y=(x+1)(x-3),
即y=x2-2x-3 
(2)依题意,得OA=1,OB=3,
∴S△AOC∶S△BOC=OA·OC∶OB·OC=OA∶OB=1∶3 
(3)在抛物线y=x2-2x-3上,存在符合条件的点P 。
解法1:如图,连接BC,交对称轴于点P,连接AP、AC。
∵AC长为定值,∴要使△PAC的 周长最小,只需PA+PC最小。
∵点A关于对称轴x=1的对称点是点B(3,0),
抛物线y=x2-2x-3与y轴交点C的坐标为(0,3)
∴由几何知识可知,PA+PC=PB+PC为最小。
设直线BC的解析式为y="kx-3" ,将B(3,0)代入得 3k-3="0" ∴k=1。
∴y="x-3" ∴当x=1时,y="-2" .∴点P的坐标为(1,-2) 
解法2:如图,连接BC,交对称轴于点P,连接AP、AC。设直线x=1交x轴于D
∵AC长为定值,∴要使△PAC的 周长最小,只需PA+PC最小。
∵点A关于对称轴x=1的对称点是点B(3,0),
抛物线y=x2-2x-3与y轴交点C的坐标为(0,3)
∴由几何知识可知,PA+PC=PB+PC为最小。
∵OC∥DP ∴△BDP∽△BOC 。∴ 
∴DP=2
∴点P的坐标为(1,-2)

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网