题目内容
如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2.从这3个条件中选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )
A. 0 B. 1 C. D.
为了解某校九年级男生的体能情况,体育老师从中随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成尚不完整的扇形图和条形图,根据图形信息回答下列问题:
(1)本次抽测的男生有________人,抽测成绩的众数是_________;
(2)请将条形图补充完整;
(3)若规定引体向上6次以上(含6次)为体能达标,则该校125名九年级男生中估计有多少人体能达标?
已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产 量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是 .
为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆车速(单位:千米/时),并绘制成如图所示的条形统计图。这些车速的众数、中位数分别是( )
A. 众数是80千米/时,中位数是60千米/时 B. 众数是70千米/时,中位数是70千米/时
C. 众数是60千米/时,中位数是60千米/时 D. 众数是70千米/时,中位数是60千米/时
(1)在如图所示的平面直角坐标系中表示下面各点:
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A点到原点的距离是 .
(3)将点C向x轴的负方向平移6个单位,它与点 重合.
(4)连接CE,则直线CE与y轴是什么位置关系?
(5)点D分别到x、y轴的距离是多少?
如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,并利用量角器量得∠EFB=66°,则∠AED′ 等于__度.
如图①,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,则∠AED= °
②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.
(2)拓展应用:
如图②,射线FE与l1,l2交于分别交于点E、F,AB∥CD,a,b,c,d分别是被射线FE隔开的4个区域(不含边界,其中区域a,b位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).
互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A. 120元 B. 100元 C. 80元 D. 60元