题目内容

已知二次函数y=-数学公式x2+bx+c的图象经过A(2,0),B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数图象的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积和周长.

解:(1)把(2,0)、(0,-6)代入二次函数解析式,可得

解得
故解析式是y=-x2+4x-6;

(2)∵对称轴x=-=4,
∴C点的坐标是(4,0),
∴AC=2,OB=6,AB=2,BC=2
∴S△ABC=AC•OB=×2×6=6,
△ABC的周长=AC+AB+BC=2+2+2
分析:(1)先把(2,0)、(0,-6)代入二次函数解析式,可得关于b、c的方程组,解即可求出函数解析式;
(2)由函数解析式,易求其对称轴,从而易得C点的坐标,再利用两点之间的距离公式,易求AB、BC,进而可求△ABC的面积和周长.
点评:本题考查了待定系数法求二次函数解析式、三角形面积、周长的计算,解题的关键是根据对称轴的计算,求出C点的横坐标,并能利用公式计算两点之间的距离.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网