题目内容

在△ABC中,AB=15,AC=13,BC边上高AD=12,试求△ABC周长。

 

【答案】

周长为42或32

【解析】本题考查的是勾股定理. 本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.

解:此题应分两种情况说明:

(1)当△ABC为锐角三角形时,在Rt△ABD中,

BD= = =9,

在Rt△ACD中,

CD= = =5

∴BC=5+9=14

∴△ABC的周长为:15+13+14=42;

(2)当△ABC为钝角三角形时,

在Rt△ABD中,BD= = =9

在Rt△ACD中,CD== =5

∴BC=9-5=4

∴△ABC的周长为:15+13+4=32

∴当△ABC为锐角三角形时,△ABC的周长为42;

当△ABC为钝角三角形时,△ABC的周长为32.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网