题目内容
【题目】如图,在
,
,
,垂足为
,点
是边上
的一个动点,连接
,过点
作
,交
的延长线于点
,连接
交
于点
.
![]()
(1)请根据题意补全示意图;
(2)当
与
全等时,
①若
,
,
,求
的度数;
②试探究
,
,
之间的数量关系,并证明.
【答案】(1)见解析(2)①40°②
,
,
之间的数量关系为:![]()
【解析】
(1)根据垂直画出图形即可得出结论;
(2)①先根据两三角形全等,判断出AB=DF,进而判断出BD=DE,再求出∠FDE=60°,进而利用三角形的外角的性质求出∠BDE=80°,进而求出∠DBE=∠BED=50°,即可得出结论;
②分两种情况:( I)若BD=DE,先判断出∠DBE=∠DEB=β,进而得出∠FBG=180°-α-β,进而得出∠FBG=∠DGE,再判断出FB=FG,即可得出结论;
( II)若AD=DE,先判断出DH>DE,再判断出∠A=∠BID,进而得出∠BID>∠C,即:∠A>∠C,即可判断出此种情况不成立.
解:(1)如图即为所求示意图.
![]()
(2)①∵
,
,
∴
.
∵
与
全等,
∴
.
又∵
,
∴
,
.
在
中,![]()
∴
.
∵
,
∵
,
∴
.
∴
.
∵
,
∴
.
在
中,
.
![]()
②
,
,
之间的数量关系为:
.
证明:
由①得,
.
(Ⅰ)若
,
设
,
,
∵
与
全等,
∴
.
∵
,
∴
.
∴
.
在
中,
.
∴
.
又∵
,
∴
.
∴
.
又∵
,
∴
.
(Ⅱ)若
,
如图,延长
交
于
,
![]()
∵
,
∴
.
则在线段
上存在点
,使得
.
连接
,
∵
,
又∵
,
∴
.
∴
.
∵
,
∴
.
∴
.
不符合题意.
综上所述,
,
,
之间的数量关系为:
.
练习册系列答案
相关题目