题目内容
【题目】如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
![]()
【答案】(1)见解析;(2)△PDH的周长是定值为8,理由见解析;(3)2
【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
![]()
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
![]()
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∠C=∠BQH=90°,BH=BH,
在△BCH和△BQH中,
,
∴△BCH≌△BQH(SAS),
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
![]()
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
在△EFM和△BPA中,
,
∴△EFM≌△BPA(AAS).
∴EM=AP.
设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+
,
∴CF=BE-EM=2+
-x,
∴BE+CF=
-x+4=
(x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.