题目内容
已知反比例函数
与一次函数y=kx+b的图象都经过点(-2,-1)且在x=2时,这两个函数值相等,求这两个函数的解析式.
解:∵反比例函数
经过点(-2,-1),
∴m=-2×(-1)=2,
∴反比例解析式为:
,
当x=2时,y=1,
∵(2,1),(-2,-1)都经过一次函数解析式,
∴
,
解得k=
,b=0,
∴一次函数解析式为
.
分析:把点(-2,-1)代入反比例函数解析式可得m的值,把x=2代入反比例函数解析式可得另一交点的纵坐标,把2点坐标代入一次函数解析式可得k,b的值.
点评:考查一次函数和反比例函数的交点问题;利用待定系数法解决问题是解决本题的关键方法.
∴m=-2×(-1)=2,
∴反比例解析式为:
当x=2时,y=1,
∵(2,1),(-2,-1)都经过一次函数解析式,
∴
解得k=
∴一次函数解析式为
分析:把点(-2,-1)代入反比例函数解析式可得m的值,把x=2代入反比例函数解析式可得另一交点的纵坐标,把2点坐标代入一次函数解析式可得k,b的值.
点评:考查一次函数和反比例函数的交点问题;利用待定系数法解决问题是解决本题的关键方法.
练习册系列答案
相关题目
2011年5月9日,我市成立了首支食品药品犯罪侦缉支队,专门打击危害食品药品安全的违法犯罪行为,食品安全已越来越受到人们的关注.我市某食品加工企业严把质量关,积极生产“绿色健康”食品,由于受食品原料供应等因素的影响,生产“绿色健康”食品的产量随月份增加呈下降趋势.今年前5个月生产的“绿色健康”食品y(吨)与月份(x)之间的关系如下表:
(1)请你从学过的一次函数、二次函数、反比例函数确定哪种函数关系能表示出y与x的变化规律,并求出y与x的函数关系式.
(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?
(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:
≈3.317,
≈3.464,
≈3.606,
≈3.742)
| 月份x(月) | 1 | 2 | 3 | 4 | 5 | … |
| “绿色健康”食品产量y(吨) | 48 | 46 | 44 | 42 | 40 | … |
(2)随着“绿色健康”食品生产量的减少,每生产一吨“绿色健康”食品,企业相应获得的利润有所提高,且每生产一吨获得的利润P(百元)与月份x(月)成一次函数关系.已知1月份每生产一吨“绿色健康”食品,企业相应获利80百元,4月份每生产一吨“绿色健康”食品企业相应获利95百元.那么今年哪月份该企业获得的利润最大?最大利润是多少百元?
(3)受国家法律保护的激励,该企业决定今年5月份起,更新食品安全检测设备的同时,扩建食品原料基地以提高生产“绿色健康”食品的产量.更新设备检测费用和扩建原料基地费用共用去4000百元,预计从6月份起,每月生产一吨“绿色健康”食品的产量在上一个月基础上增加a%,与此同时,每生产一吨“绿色健康”食品,企业相应获得的利润在上一个月的基础上增加20%,要使今年6、7月份利润的总和在扣除设备检测费用和扩建基地费用后,仍是今年5月份月利润的2倍,求a的整数值.(参考数据:
| 11 |
| 12 |
| 13 |
| 14 |