题目内容
如图,已知在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F.
求证:四边形CFDE是正方形.
如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是( )
A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2
C. 3∠A=2∠1+∠2 D. 3∠A=2(∠1+∠2)
一架方梯AB长25米,如图所示,斜靠在一面上:
(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?
(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
如图,字母B所代表的正方形的面积是( )
A. 12 B. 194 C. 13 D. 144
在正方形ABCD中,CE=DF,求证:AE⊥BF.
已知菱形两条对角线的长分别为10cm和16cm,则这个菱形的面积是______________。
下列各式是最简二次根式的是( )
A. B. C. D.
方程的解是_______________.
如图:抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD,
(1)求抛物线的解析式;
(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,写出自变量x的取值范围,并求当x取多少时,S的值最大,最大是多少?