题目内容
(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.
(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点
∴9a-3b+3=0 且a-b+3=0解得a=1b=4
∴抛物线的解析式为y=x2+4x+3
(2)由(1)配方得y=(x+2)2-1
∴抛物线的顶点M(-2,,1)∴直线OD的解析式为y=
x
于是设平移的抛物线的顶点坐标为(h,
h),
∴平移的抛物线解析式为y=(x-h)2+
h.
①当抛物线经过点C时,∵C(0,9),∴h2+
h=9,
解得h=
.
∴ 当
≤h<
时,平移的抛物线与射线CD只有一个公共点.
②当抛物线与直线CD只有一个公共点时,
由方程组y=(x-h)2+
h,y=-2x+9.
得 x2+(-2h+2)x+h2+
h-9=0,∴△=(-2h+2)2-4(h2+
h-9)=0,
解得h=4.
此时抛物线y=(x-4)2+2与射线CD唯一的公共点为(3,3),符合题意.
综上:平移的抛物线与射线CD只有一个公共点时,顶点横坐标的值或取值范围是 h=4或
≤h<
.
(3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x2,

设EF的解析式为y=kx+3(k≠0).
假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的内心在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,...............9分∴GP/PH=GE/HF,
∴-xE/xF=(yE-t)/(yF-t)=(kxE+3-t)/(kxF+3-t)
∴2kxE·xF=(t-3)(xE+xF)
由y=x2,y=-kx+3.得x2-kx-3=0.
∴xE+xF=k,xE·xF=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.
方法2 设EF的解析式为y=kx+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.解析:
略
∴9a-3b+3=0 且a-b+3=0解得a=1b=4
∴抛物线的解析式为y=x2+4x+3
(2)由(1)配方得y=(x+2)2-1
∴抛物线的顶点M(-2,,1)∴直线OD的解析式为y=
于是设平移的抛物线的顶点坐标为(h,
∴平移的抛物线解析式为y=(x-h)2+
①当抛物线经过点C时,∵C(0,9),∴h2+
解得h=
∴ 当
②当抛物线与直线CD只有一个公共点时,
由方程组y=(x-h)2+
得 x2+(-2h+2)x+h2+
解得h=4.
此时抛物线y=(x-4)2+2与射线CD唯一的公共点为(3,3),符合题意.
综上:平移的抛物线与射线CD只有一个公共点时,顶点横坐标的值或取值范围是 h=4或
(3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x2,
设EF的解析式为y=kx+3(k≠0).
假设存在满足题设条件的点P(0,t),如图,过P作GH∥x轴,分别过E,F作GH的垂线,垂足为G,H.∵△PEF的内心在y轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP,∴△GEP∽△HFP,...............9分∴GP/PH=GE/HF,
∴-xE/xF=(yE-t)/(yF-t)=(kxE+3-t)/(kxF+3-t)
∴2kxE·xF=(t-3)(xE+xF)
由y=x2,y=-kx+3.得x2-kx-3=0.
∴xE+xF=k,xE·xF=-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.
方法2 设EF的解析式为y=kx+3(k≠0),点E,F的坐标分别为(m,m2)(n,n2)由方法1知:mn=-3.作点E关于y轴的对称点R(-m,m2),作直线FR交y轴于点P,由对称性知∠EPQ=∠FPQ,∴点P就是所求的点.由F,R的坐标,可得直线FR的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P(0,-3).∴y轴的负半轴上存在点P(0,-3),使△PEF的内心在y轴上.解析:
略
练习册系列答案
相关题目
(本题满分12分)
如图,
的顶点A、B在二次函数
的图像上,又点A、B[来分别在
轴和
轴上,
∠ABO=
.
![]()
1.(1)求此二次函数的解析式;(4分)
2.
|
点
在上述函数图像上,当
与
相似时,求点
的坐标.(8分)