题目内容
计算:(1)
| a+2 |
| a-2 |
| 1 |
| a2+2a |
(2)
| x2-2x+1 |
| x2-1 |
| x-1 |
| x2+x |
(3)(
| a2-4 |
| a2-4a+4 |
| 1 |
| a-2 |
| a+1 |
| a+2 |
(4)1-(a-
| 1 |
| 1-a |
| a2-a+1 |
| a2-2a+1 |
(5)(-1)2+(
| 1 |
| 2 |
(6)(
| a2 |
| b |
| b2 |
| -a |
| b |
| a |
(7)(
| 3x |
| x-1 |
| x |
| x+1 |
| x2-1 |
| x |
(8)
| x+3 |
| 3-x |
| x2-9 |
| x2+6x+9 |
分析:(1)先对分式中的分母分解因式,然后约分化简;
(2)先对分式中的分母、分子分解因式,并将除法变为乘法的形式,然后约分化简;
(3)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简;
(4)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,再来计算减法;
(5)先算乘方,后算除法,最后算加减;
(6)先算乘方,后算乘法;
(7)首先把括号里的式子进行通分、合并同类项,然后对括号外的分式飞分子分解因式,最后计算乘法;
(8)先对分式中的分母分解因式、通分,然后约分化简.
(2)先对分式中的分母、分子分解因式,并将除法变为乘法的形式,然后约分化简;
(3)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简;
(4)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,再来计算减法;
(5)先算乘方,后算除法,最后算加减;
(6)先算乘方,后算乘法;
(7)首先把括号里的式子进行通分、合并同类项,然后对括号外的分式飞分子分解因式,最后计算乘法;
(8)先对分式中的分母分解因式、通分,然后约分化简.
解答:解:(1)原式=
•
,
=
;
(2)原式=
×
,
=x;
(3)原式=
×
,
=
×
,
=
;
(4)原式=1-
×
,
=1-(a-1),
=2-a;
(5)原式=1+2-5÷1,
=1+2-5,
=-2;
(6)原式=
•
•
,
=-a(4-3+4)•b(6-2-4),
=-a5•1,
=-a5;
(7)原式=
•
,
=3(x+1)-(x-1),
=2x+2;
(8)原式=
+
,
=
+
,
=-
,
=-
.
| a+2 |
| a-2 |
| 1 |
| a(a+2) |
=
| 1 |
| a(a-2) |
(2)原式=
| (x-1)2 |
| (x-1)(x+1) |
| x(x+1) |
| x-1 |
=x;
(3)原式=
| (a-2)(a+2)-(a-2) |
| (a-2)2 |
| a+2 |
| a+1 |
=
| (a-2)(a+1) |
| (a-2)2 |
| a+2 |
| a+1 |
=
| a+2 |
| a-2 |
(4)原式=1-
| a-a2-1 |
| 1-a |
| (a-1)2 |
| a-a2-1 |
=1-(a-1),
=2-a;
(5)原式=1+2-5÷1,
=1+2-5,
=-2;
(6)原式=
| a4 |
| b2 |
| b6 |
| -a3 |
| b-4 |
| a-4 |
=-a(4-3+4)•b(6-2-4),
=-a5•1,
=-a5;
(7)原式=
| 3x(x+1)-x(x-1) |
| (x-1)(x+1) |
| (x-1)(x+1) |
| x |
=3(x+1)-(x-1),
=2x+2;
(8)原式=
| x+3 |
| 3-x |
| (x+3)(x-3) |
| (x+3)2 |
=
| x+3 |
| 3-x |
| x-3 |
| x+3 |
=-
| (x+3)2-(x-3)2 |
| (x+3)(x-3) |
=-
| 12x |
| (x+3)(x-3) |
点评:本题考查了分式的混合运算.通分、因式分解和约分是解答的关键.注意混合运算的运算顺序:先进行乘、除运算,再进行加、减运算,同级运算要自左到右按顺序进行,遇有括号,先算括号内的.
练习册系列答案
相关题目