题目内容

(2011广西梧州,25,10分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.

(1)求证:AD是⊙O的切线;

(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.

 

解:(1)证明:连接OC.

∵CD是⊙O的切线,

∴∠OCD=90°.

∴∠OCA+∠ACD=90°.

∵OA=OC,

∴∠OCA=∠OAC.

∵∠DAC=∠ACD,

∴∠0AC+∠CAD=90°.

∴∠OAD=90°.

∴AD是⊙O的切线.

(1)       连接BG;

∵OC=6cm,EC=8cm,

∴AE=OE+OA=1.

∵AF⊥ED,

∴∠AFE=∠OCE=90°,∠E=∠E.

∴Rt△AEF∽Rt△OEC.

∴AF=9.6.

∵AB是⊙O的直径,

∴∠AGB=90°.

∴∠AGB=∠AFE.

∵∠BAG=∠EAF,

∴Rt△ABG ∽Rt△AEF.

∴AG=7.2.

∴GF=AF-AG=9.6-7.2=2.4(cm) .

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网