题目内容
一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黑球的概率为( )
A. B. C. D.
A为⊙C上一点,过点A作弦AB,取弦AB上一点P,若满足≤<1,则称P为点A关于⊙C的黄金点.已知⊙C的半径为3,点A的坐标为(1,0).
(1)当点C的坐标为(4,0)时,
①在点D(3,0),E(4,1),F(7,0)中,点A关于⊙C的黄金点是 ;
②直线上存在点A关于⊙C的黄金点P,求点P的横坐标的取值范围;
(2)若y轴上存在点A关于⊙C的黄金点,直接写出点C横坐标的取值范围.
“同旁内角互补”的逆命题是____________________________________________.
某校对七年级220名学生的年龄进行整理,分成11岁、12岁、13岁三组,若11岁这组的频率为0.3,12岁这组的频率为0.45,则13岁这组的频数是______.
如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )
如图,CD⊥AB,EF⊥AB,垂足分别为D、F,∠1=∠2,
(1)试判断DG与BC的位置关系,并说明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度数.
如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠1=110°,则∠EFG =_______
已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.
(1)如图1,若点E在线段BC上,求CF的长;
(2)求sin∠DAB1的值;
(3)如果题设中“BE=2CE”改为“=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).
如图,圆锥的底面半径为3,母线长为6,则侧面积为( )
A. 8π B. 6π C. 12π D. 18π