题目内容
计算和方程:(1)先化简,再求值:
| x3-x2 |
| x2-x |
| 1-x2 |
| x+1 |
(2)
| 4 |
| x2-4 |
| 2 |
| x+2 |
| 1 |
| x-2 |
(3)
| 3 |
| x-1 |
| 2 |
| x+1 |
| 6 |
| x2-1 |
(4)(-2ab)÷
| ab2 |
| a-b |
| 1 |
| 2(b-a)2 |
(5)(a-
| a |
| a+1 |
| a2-2a |
| a2-4 |
| a+1 |
| a2+3a+2 |
分析:(1)先通过约分、通分进行化简,再把给定的值代入计算;
(2)最简公分母为(x+2)(x-2),通分即可;
(3)最简公分母为(x+1)(x-1),先去分母解方程;
(4)确定符号并把除法化为乘法,再约分计算;
(5)把除法化为乘法,因式分解再约分计算.
(2)最简公分母为(x+2)(x-2),通分即可;
(3)最简公分母为(x+1)(x-1),先去分母解方程;
(4)确定符号并把除法化为乘法,再约分计算;
(5)把除法化为乘法,因式分解再约分计算.
解答:解:(1)
-
=
+
=x+x-1=2x-1,
当x=2时,原式=2×2-1=3;
(2)
+
-
=
=
=
;
(3)
-
=
去分母,得3(x+1)-2(x-1)=6,
去括号,得3x+3-2x+2=6,
移项、合并同类项,得x=1;
(4)(-2ab)÷
•
=-2ab•
•
=-
;
(5)(a-
)÷
•
=
•
•
=
.
| x3-x2 |
| x2-x |
| 1-x2 |
| x+1 |
| x2(x-1) |
| x(x-1) |
| (x+1)(x-1) |
| x+1 |
当x=2时,原式=2×2-1=3;
(2)
| 4 |
| x2-4 |
| 2 |
| x+2 |
| 1 |
| x-2 |
| 4+2x-4-x-2 |
| (x+2)(x-2) |
| x-2 |
| (x+2)(x-2) |
| 1 |
| x+2 |
(3)
| 3 |
| x-1 |
| 2 |
| x+1 |
| 6 |
| x2-1 |
去分母,得3(x+1)-2(x-1)=6,
去括号,得3x+3-2x+2=6,
移项、合并同类项,得x=1;
(4)(-2ab)÷
| ab2 |
| a-b |
| 1 |
| 2(b-a)2 |
| a-b |
| ab2 |
| 1 |
| 2(a-b)2 |
| 1 |
| b(a-b) |
(5)(a-
| a |
| a+1 |
| a2-2a |
| a2-4 |
| a+1 |
| a2+3a+2 |
| a2+a-a |
| a+1 |
| (a+2)(a-2) |
| a(a-2) |
| a+1 |
| (a+2)(a+1) |
| a |
| a+1 |
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目