题目内容
-2018的相反数是( )
A. -2018 B. 2018 C. D.
如图,在某笔直路段MN内小车行驶的最高限速60千米/小时.交通部门为了检测车辆是否在此路段超速行驶,在公路MN旁设立了观测点C,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求测速点C到该公路的距离;
(2)若测得一小车从A点到达点B行驶了3秒,请通过计算判断此车是否超速.(参考数据:,)
解分式方程=1,可知方程的解为( )
A. x=1 B. x=3 C. x= D. 无解
如图,若△ADE∽△ACB,且,DE=10,则BC=______.
如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是( )
A. B. C. D.
如图,矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且点B,F关于过点E的直线对称,如果EF与以CD为直径的圆恰好相切,那么AE=_______.
如图,在距离铁轨200米的A处,观察由成都开往西安的“和谐号”动车,当动车车头到达B处时,车头恰好位于A处的北偏东60°方向上,10秒钟后,动车车头到达C处,此时车头恰好位于A处西偏北45°方向上,求这时段动车的平均速度是多少米/秒?(结果精确到个位,参考数据≈1.414,≈1.732)
已知抛物线=(≠0)与轴交于A?B两点,与轴交于C点,其对称轴为=1,且A(-1,0)?C(0,2).
(1)直接写出该抛物线的解析式;
(2)P是对称轴上一点,△PAC的周长存在最大值还是最小值?请求出取得最值(最大值或最小值)时点P的坐标;
(3)设对称轴与轴交于点H,点D为线段CH上的一动点(不与点C?H重合).点P是(2)中所求的点.过点D作DE∥PC交轴于点E.连接PD?PE.若CD的长为,△PDE的面积为S,求S与之间的函数关系式,试说明S是否存在最值,若存在,请求出最值,并写出S取得的最值及此时的值;若不存在,请说明理由.
如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )
A. 25° B. 50° C. 60° D. 80°