题目内容
【题目】如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90°得到平行四边形A′B′OC′.抛物线y=﹣x2+2x+3经过点A、C、A′三点.
(1)求A、A′、C三点的坐标;
(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△C′OD的面积;
(3)点M是第一象限内抛物线上的一动点,问点M在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M的坐标.
![]()
【答案】(1)C(﹣1,0),A′(3,0),A(0,3);(2)
;(3)S△AMA′==﹣
(m﹣
)2+
,∴当m=
时,S△AMA'的值最大,最大值为
,此时M点坐标为(
,
).
【解析】
(1)利用抛物线与x轴的交点问题可求出C(﹣1,0),A′(3,0);计算自变量为0时的函数值可得到A(0,3);
(2)先由平行四边形的性质得AB∥OC,AB=OC,易得B(1,3),根据勾股定理和三角形面积公式得到OB=
,S△AOB=
,再根据旋转的性质得∠ACO=∠OC′D,OC′=OC=1,接着证明△C′OD∽△BOA,利用相似三角形的性质得
=(
)2,则可计算出S△C′OD;
(3)根据二次函数图象上点的坐标特征,设M点的坐标为(m,﹣m2+2m+3),0<m<3,作MN∥y轴交直线AA′于N,求出直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),于是可计算出MN=﹣m2+3m,再利用S△AMA′=S△ANM+S△MNA′和三角形面积公式得到S△AMA′=﹣
m2+
m,然后根据二次函数的最值问题求出△AMA′的面积最大值,同时即可确定此时M点的坐标.
(1)当y=0时,﹣x2+2x+3=0,
解得x1=3,x2=﹣1,
则C(﹣1,0),A′(3,0),
当x=0时,y=3,则A(0,3);
(2)∵四边形ABOC为平行四边形,
∴AB∥OC,AB=OC,
而C(﹣1,0),A(0,3),
∴B(1,3),
∴OB=
=
,S△AOB=
×3×1=
,
又∵平行四边形ABOC旋转90°得平行四边形A′B′OC′,
∴∠ACO=∠OC′D,OC′=OC=1,
又∵∠ACO=∠ABO,
∴∠ABO=∠OC′D.
又∵∠C′OD=∠AOB,
∴△C′OD∽△BOA,
∴
=(
)2=(
)2=
,
∴S△C′OD=
×
=
;
(3)设M点的坐标为(m,﹣m2+2m+3),0<m<3,
作MN∥y轴交直线AA′于N,易得直线AA′的解析式为y=﹣x+3,则N(m,﹣m+3),
∵MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,
∴S△AMA′=S△ANM+S△MNA′
=
MN3
=
(﹣m2+3m)
=﹣
m2+
m
=﹣
(m﹣
)2+
,
∴当m=
时,S△AMA'的值最大,最大值为
,此时M点坐标为(
,
).