题目内容

精英家教网如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.
分析:连接MF、ME,根据直角三角形斜边上的中线等于斜边的一半可得到MF=
1
2
BC=ME,再根据等腰三角形的三线合一的性质即可推出MN⊥EF.
解答:精英家教网证明:连接MF、ME,
∵CF⊥AB,在Rt△BFC中,M是BC的中点,
∴MF=
1
2
BC(斜边中线等于斜边一半),
同理ME=
1
2
BC,
∴ME=MF,
∵N是EF的中点,
∴MN⊥EF.
点评:此题主要考查直角三角形斜边上的中线的性质及等腰三角形三线合一的性质的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网