题目内容
下列计算正确的是( )
A. x+x2=x3 B. 2x-3x=-x C. (x2)3=x5 D. x6÷x3=x2
如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为( )
A. 3 B. 4 C. 6 D. 7
如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于( )
A.3cm B.4cm C.6cm D.9cm
如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是______度.
在平面直角坐标系中,点A,B的坐标分别为(2m-2,3),(m,3),且点A在点B的左侧,若线段AB与直线y=-2x+1相交,则m的取值范围是( )
A. -1≤m≤ B. -1≤m≤1 C. -≤m≤1 D. 0≤m≤1
(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,说明理由;
(3)当t为何值时,△CPQ为等腰三角形?
如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cosα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.4.其中正确的结论是______________.(填序号)
(本题满分分)已知在平面直角坐标系中,点是抛物线上的一个动点,点的坐标为.
(1).如图1,直线过点且平行于轴,过点作,垂足为,连接,猜想与的大小关系: ______ (填写“>”“<”或“=” ),并证明你的猜想.
(2).请利用(1)的结论解决下列问题:
①.如图2,设点的坐标为, 连接,问是否存在最小值?如果存在,请说明理由,并求出点的坐标;如果不存在,请说明理由.
②.若过动点和点的直线交抛物线于另一点,且,求直线的解析式(图3为备用图).
48°39′+67°41′=__, 105.48°=___°____′_____〞.