题目内容
在Rt△ABC中,∠BAC=90°,AB=AC=1,以AC为腰作等腰直角三角形ACD,则线段BD的长为________.
2或
或
分析:分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
解答:①以A为直角顶点,向外作等腰直角三角形DAC,

∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=1+1=2;
②以C为直角顶点,向外作等腰直角三角形ACD,

连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=1×
=
;
在Rt△BAC中,BC=
,
∴BD=
,
③以AC为斜边,向外作等腰直角三角形ADC,

∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=1×
,
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC=
,
∴BD=
,
综上所述:BD的长等于2或
或
.
点评:本题考查了等腰直角三角形的性质、勾股定理等知识,解题时注意分类讨论,不要漏掉所有可能的情况.
分析:分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.
解答:①以A为直角顶点,向外作等腰直角三角形DAC,
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=1+1=2;
②以C为直角顶点,向外作等腰直角三角形ACD,
连接BD,过点D作DE⊥BC,交BC的延长线于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=1×
在Rt△BAC中,BC=
∴BD=
③以AC为斜边,向外作等腰直角三角形ADC,
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=1×
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC=
∴BD=
综上所述:BD的长等于2或
点评:本题考查了等腰直角三角形的性质、勾股定理等知识,解题时注意分类讨论,不要漏掉所有可能的情况.
练习册系列答案
相关题目
在Rt△ABC中,已知a及∠A,则斜边应为( )
| A、asinA | ||
B、
| ||
| C、acosA | ||
D、
|
| A、9:4 | B、9:2 | C、3:4 | D、3:2 |