题目内容

如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点分别在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为1,l2,l3之间的距离为3,则AC2为(  )
A、13B、25C、26D、50
考点:全等三角形的判定与性质,平行线之间的距离,勾股定理,等腰直角三角形
专题:计算题,几何图形问题
分析:过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离,根据AAS证△DAB≌△EBC,求出BE=3,根据勾股定理求出BC、AB、AC,根据三角形的面积即可求出答案.
解答:解:
过A作AD⊥l3于D,过B作BF⊥AC于F,过C作CE⊥l3于E,则BF的长就是点B到AC的距离
∵AD⊥l3,CE⊥l3
∴∠ADB=∠ABC=∠CEB=90°,
∴∠DAB+∠ABD=90°,∠ABD+∠CBE=90°,
∴∠DAB=∠CBE,
在△DAB和△EBC中,
∠DAB=∠EBC
∠ADB=∠BEC
AB=BC

∴△DAB≌△EBC,
∴AD=BE=3,
∵CE=3+1=4,
在△CEB中,由勾股定理得:AB=BC=5,AC=5
2

∴AC2=50,
故选D.
点评:此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网