题目内容
已知二次函数y=x2+2ax+b2和y=x2+2bx+c2的图象与x轴都有两个不同的交点,则函数y=x2+2cx+a2的图象与x轴的交点的个数是
- A.0
- B.1
- C.2
- D.无法确定
A
分析:利用函数图象与x轴的交点个数与一元二次方程解的性质.
解答:二次函数y=x2+2ax+b2和y=x2+2bx+c2的图象与x轴都有两个不同的交点,于是有(2a)2-4b2>0①;(2b)2-4c2>0②;
则①+②得4a2-4c2>0,即4c2-4a2<0,则y=x2+2cx+a2中,(2c)2-4a2<0,方程无解,即图象与x轴的交点的个数是0.
故选A.
点评:本题考查了函数图象与x轴的交点个数与一元二次方程解的关系,可转化为判别式来解答.
分析:利用函数图象与x轴的交点个数与一元二次方程解的性质.
解答:二次函数y=x2+2ax+b2和y=x2+2bx+c2的图象与x轴都有两个不同的交点,于是有(2a)2-4b2>0①;(2b)2-4c2>0②;
则①+②得4a2-4c2>0,即4c2-4a2<0,则y=x2+2cx+a2中,(2c)2-4a2<0,方程无解,即图象与x轴的交点的个数是0.
故选A.
点评:本题考查了函数图象与x轴的交点个数与一元二次方程解的关系,可转化为判别式来解答.
练习册系列答案
相关题目
已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是( )
A、
| ||
B、-
| ||
C、
| ||
D、-
|
| A、x1=1,x2=3 | B、x1=0,x2=3 | C、x1=-1,x2=1 | D、x1=-1,x2=3 |